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A COHERENT NONLINEAR THEORY OF AURORAL KILOMETRIC RADIATION:
II. DYNAMIC INTERACTIONS

I. Introduction

In a recent paper [Grabbe, et al. 1980], a theory of auroral

kilometric radiation was proposed, in which electromagnetic noise is

amplified by interaction with low frequency coherent quasineutral

density fluctuations created by electrostatic ion cyclotron (EIC)

waves, in the presence of precipitating auroral electron beams. The

result is a three-wave parametric process in which a beat wave is

produced that can interact with the beam, much like the theory of

Palmadesso, et al [1976]. It was found that when the wave frequency

is in the right range, the electromagnetic wave is negative energy in

the rotating frame of the beam electron and undergoes a convective

instability. The basic requirements for the instability were found

to be:

(1) Minimum beam density:

n b __0 k (Av ) 2

-To 2w 2ce vb

where nb and 0 are the beam and plasma density, respectively, vb and

Av the beam velocity and thermal spread in velocity space, kz the

wave vector component along the magnetic field, and wce the electron

cyclotron frequency.

(2) Accessibility to free space (w > wR where wR is the right hand

cutoff):

W2 < k Vh W (2)
pe z ce

Manuscript submitted November 7, 1980.



(3) Frequency range:

ce zVb (3)

Condition (1) typically requires nb > 10-  n and condition (2) typi-

cally requires local depletion of the plasma density such that

Wpe < 0.2 w ce. The latter is in very good agreement with the observed

density depletion [Benson n.d Calvert, 1979].

Combining conditions (1) - (3) gives the following limits on

the frequency and propagation directions of the wave for amplification

W2

ce

2e 2Wc Vb z

pe < cos e < ce v b (5)
k Vb"ce 

0

Eq. (4) gives radiation in a narrow frequency just above the right

band cutoff, while Eq. (5) normally limits the propagation to be

almost (but not quite) perpendicular to the magnetic field [Grabbe,

1980]. Furthermore, the 0-mode has no such unstable frequency range,

hence the X-mode is the predicted polarization. All of these pre-

dictions are in excellent agreement with observation.

The above conclusions were based on a steady state model, in

which amplitude of the density fluctuations was assumed to be approxi-

mately constant. This is valid if the energy in the density fluc-

tuations is replenished by the beam or other sources at approximately

the same rate as it is being used up. However, the Feynman diagram
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for the three-wave process (Fig. 1) reveals that a more dynamical

process is taking place. Not only is energy being resonantly trans-

ferred from the density fluctuation to the electromagnetic wave in the

appropriate frequency band because of the beam, but the energy the

beam injects into the beat wave is being transferred back to the

density fluctuations and the electromagnetic wave because of a finite

three wave coupling coefficient. This coupling coefficient was ignored

in the steady state theory, but must be included to understand the full

dynamical process.

The purpose of this paper is to study the dynamics of the full

three wave process, including temporal variations in the density fluc-

tuations and a finite three-wave coupling coefficient, in order to

confirm the predictions of the steady state tneory. In Sec. II we

introduce a set of coupled n.nnlinear rate equations for the evolution

of each of the three waves in the Feynman diagram, and discuss steady

state solutions. Several numerical solutions of these equations are

presented and discussed in Sec. III for various typical parameters.

The principle conclusions are summarized in Sec. IV.

3



quasimode

EIC Wave ) b

Fig. 1 - Feynman diagram for the three-wave interaction involved in the amplification of
radiation to produce auroral kilometric radiation. The processes numbered are (1) induced
absorption, (2) beam amplification, (3) induced (and spontaneous) emission, and (4) reso-
nant amplification. The rate coefficient for each Jrocess is shown.
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II. Dynamical Model

The dynamical processes involved in the amplification process

which produces the AKR are summarized in the three-wave Feynman diagram

in Fig. 1. These processes are (1) Induced absorption of the X mode by

the density fluctuations to create the quasimode or beat wave (.2) Beam

amplification of the beat wave (3) Spontaneous and induced emission of

the X-mode by the beat mode (4) Resonant interaction between the density

fluctuations and the X mode in which energy is transferred to the X mode.

The conditions for the last process were given in the introduction, and

the resulting spatial growth rate was given by Eq. (28) in Grabbe, et al

[1980]:

a = )[) 2 - 1)] 12(6)
tc 1 ! 4 kl 1

We want to formulate the rate equations for the aforementioned

processes in terms of the (quantum) occupation number density of the

waves.

N. IE 2/ 87rw. (7)

where is the wave electric field. We designate N as the number

density of the X-mode, N1 for the density fluctuations, and Nb for

the beat wave. We then have the following contributions to the rate

equation for each process numbered in Fig. 1:
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(1) Induced absorption.

dNb
i

db -W N N (8a)

dt o 1

dN1t = -W N (8b)

dNb 2WN N (8c)

dt o 1

where W is the three wave coupling coefficient [Tsytovich, 1974]:

2 3 2
ew.W m.

W e el pe i (9)
87Tm 3 w3 v4 k 

2

e VTe

(2) Beam amplification.

dNb
d-t b bDD(0

where we take the beam driven growth rate of the quasimode Fb to be the

usual form for a beam plasma instability [Briggs, 1964]:

(n 1/3

Im w %14 _ W (11)Fb= n1 014 ) pe

(3) Spontaneous and induced emission.

dN
= W Nb(1+N+N I) (12a)

dtb
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dN Idt1  = W (1+N+NI) (12b)

dt b o 1

dNb
b = -2W Nb(1+No+N) (12c)

dtb o1

The spontaneous emission term (first term on the right hand) is normally

negligible, since normally No >> 1 or N1 >> 1 (N0 and NI, taken as

dimensionless occupation numbers).

(4) Resonant interaction.

dN o /2
= yN N' (13a)

dt ol1

dN 1  -N1N/2=~ - i/2 (13b)

dt o

Here the dependence of the resonant growth rate 7 of the X-mode on the

density fluctuation N1 has been explicitly factored out:

2(14)

Here the temporal growth rate can be expressed in terms of the spatial

growth rate by multiplying by the group velocity

F = 2 K c (15)

where the factor 2 represents the conversion between electric field

growth rate an the quantum density growth rate. Thus from Eq. (6)

-2 3/2
(270 ' 2 W e 2 (16)

at its maximum value.

Combining, (1), (2), (3), (4) we find the complete set of

equations to be



dN
dt W(NbNo+NbN-NoNl) + NN (17a)dtbob101 01

dNl 1 /2dt = W(NbN o+NbN-N N1 ) - yNoNl1 (17b)

dNb

dt = 2W(NoN-NoNb-NNb) + bNb  (17c)

These are the central equations we want to solve for AKR evolution.

Before obtaining numerical solutions of the equations we want

to first examine them for steady state solutions. If we consider the

limit of constant density fluctuations dN1 /dt = 0, the case analyzed

in our steady state theory, we find

dN 0 = 2yNoN /2 (8)
dt

This result shows that the X-mode grows at twice the rate determined

in our steady state [Grabbe, et al., ]980]. This result can be under-

stood by noting the two processes which transfer energy to the X mode:

(3) transfers energy from the beat wave to the X mode and density

fluctuations at equal rates; (4) transfers energy from the density

fluctuation to the X-mode. Both processes (3) and (4) must occur at

equal rates for the density fluctuation to achieve a steady state.

Since the steady state model only considers the contribution of

process (4), it only gives one-half of the growth rate.

8
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III. Numerical Results

To obtain typical values for the growth rates and ooupling

coefficient we use Eqs. (9), (11) and (16). If we take typical source

S-3 %o
region values nb>lO no, w <0.2 w n %0.3-0.5 n , we find the following

normalized values when the N 's are normalized to dimensionless values
0L

Fb > 6 x 10 sec (19a)

1N2 > 6 x l04 sec (19b)

W 0.05 sec (19c)

e2 me2C2 N ' 
2 2

Here NC = (e /M c) , y = (e/me cvw ) and = (m c / )W. These values

will be used as a guide for inDut to the numerical calculations.

The kinetic equations in Eq. (17) were solved for several values

of the growth rate and initial conditions, although the initial value

of N1 was always set to the normalized value on 1. A classical Runge-Kutta

integration routine was used initially but proved to be too inefficient,

so it was replaced by a stiff integration scheme called CHEMEQ (Young,

1980]. A sampling of the results is shown in Figs. 2-4. Included in the

graphs is the ratio of the time dependent growth rate F*(t) to the

resonant growth rate F, where

dN
0

d F*(t)N (20)

The graphs show that there are two principle stages of growth

of the X-mode. In the initial stage the growth rate is just the

resonant growth rate dN /dt=YN0N1. The reason for this stage is that

not much energy has been transferred into the beat wave, so all of the

X-mode energy is coming from the density fluctuations. This stage

9



10~6 No (0) = 1.
N1 (0) 1.Y=I

105 Yb = 2. units of
w = 10 5  10 5 sec-1

104

No

103

102 -

10

iI , I .I I I

10 20 30 40 50 60

t (ijO-5 sec)
Fig. 2 - Growth and saturation of the X mode radiation for the initial conditions and rate
coefficients shown. The values shown are for the normalized form given by Eq. (19). Note
that the radiation grows in two principal stages: in the first, the wave grows primarily on
energy from the EIC density fluctuations, and temporarily saturates; in the second the wave
grows to very large amplitudes because of energy coupled in from the beam via a beat wave
then finally saturates.
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No (0)= 1.
10 7  N, (0) 1.

N1 ")= 1. units of
S"Yb -- 10. 105 -

W 10-6 sec 1

No 0  - 16
105

104

10 3

102

10

5 10

t (10- 5 sec)
Fig. 3 - Same as Fig. 2 for a slightly different set of rate coefficients.
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10-
8

(105 sec- 1)

4-

2-

1

I I I I

10 20 30
t (10- 5 sec)

Fig. 4 - Graph of the ratio of the growth rate of the wave as function of time to that
found in the steady state theory, for the conditions in Fig. 3. Note that it is normally
2n, for various non-negative integer values of n.
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normally saturates when most of the energy in the density fluctuations

is absorbed. The second stage starts when a significant amount of energy

has been pumped into the beat wave by the beam, and this energy begins

being transferred to the density fluctuations and the X-mode. This

second stage grows at dNo0/dt=2,N 0N , or twice the resonant growth rate.

The graphs of F*(t)/'=f*(t)/y shows thee may also exist subsequent

stages in which the growth rate occurs at dN /dt=4yNN , dN /dt=8yN N
0 0 0 o1

etc. Then the process reaches a final level of saturation when almost

all of the energy of the density fluctuations and the beat wave has been

depleted. The stages of growth confirm that the rate of growth is

governed by the resonant growth rate F=yNl, as predicted by the steady

state theory.

A comparison of the saturation amplitude of the X-mode shows

that it always is several orders of magnitude above the initial value

of the density fluctuations N (t-O). This shows that virtually all of

the energy comes from the beam, rather than from the initial level of

the density fluctuations. Furthermore, when rb is varied en samnle runs

with all other parameters being held constant, then the saturation

amplitude increases as Fb is increased; thus, rb determines the total

energy the electromagnetic wave can absorb. A statistical analysis of

the saturation level No sat from many sample runs reveals the

scaling law

N 4/(21)
o sat b

From Eq. (11), we have the dependence on the relative beam density

13



N n 41 22)
o sat

A derivation of this scaling law is given in the Appendix.

A comparison has been made on sample runs for different initial

values of NI, all other parameters held constant. It is found that

although the growth rate of the X mode increases linearly with N1 , the

saturation amplitude is relatively independent of the initial value of

NI! The significance of this for the growth process in the finite

density depleted cavity introduced in the steady state model [Grabbe,

et al., 1980] is the following. If the X-mode saturates before propagating

out of the growth region in the cavity, then an increase in the initial

levels of the density fluctuations does not have a very important effect

on level of AKR produced. However, if the X-mode propagates out of the

growth region before reaching its saturation level, increasing the

initial level of the EIC density fluctuations would bring the AKR closer

to its saturation value. Calculation done in the steady state model

would suggest the former case occurs more often than the latter.

14



IV. Summary and Conclusions

We have formulated the dynamics of the three-wave process

involved in ariplification of the X-mode to produce AKR in terms of a

set of coupled rate equations. An analysis of these coupled rate

equations has confirmed the conclusions drawn from the steady state

theory. It was found that the growth rate was determined by the

resonant growth rate found in the steady state. The growth was seen

to occur in stages: an initial stage in which the growth rate was

just the resonant growth rate, and subsequent stage of growth at 20n

times the resonant growth rate, where n-1,2,3,......This is followed by

a saturation of the wave.

8_ 10
It was found that the AKR could saturate at 10 -10 times

the initial (noise) levels. This is adequate to produce the observed

levels of AXR. Almost all of this energy comes from the beam, and the

saturation amplitude was seen to scale as r b' " so that the growth

rate of the beat wave determines the total energy the electromagnetic

wave can absorb. Finally, it was found that for sufficiently large

density cavities with growth regions, the saturation level of AKR is

relatively independent of the initial level of the ETC density fluctuations.
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